分享缩略图

分享到:
链接已复制
首页>新闻中心>

【YOLOv5/v7改进系列】引入中心化特征金字塔的EVC模块

2025-06-24 12:16:24

来源:新华网

字体:

一、导言

现有的特征金字塔方法过于关注层间特征交互而忽视了层内特征的调控。尽管有些方法尝试通过注意力机制或视觉变换器来学习紧凑的层内特征表示,但这些方法往往忽略了对密集预测任务非常重要的被忽视的角落区域。

为了解决这个问题,作者提出了CFP,它首先在最深层的特征图上应用显式视觉中心方案,然后利用这些信息去调整较浅层的特征图。这种方法使得CFP不仅能够捕捉全局的长距离依赖,还能高效地获得全面且有判别性的特征表示。

CFP通过其显式视觉中心方案和全局集中化调节机制,在保持较低计算复杂度的同时提高了特征金字塔的质量,从而在目标检测任务中实现了更好的性能。

本文主要利用EVC模块进行改进工作。

EVC 的主要目的是捕捉全局的长距离依赖关系,并保留输入图像中的局部关键区域信息。下面是对 EVC 模块的详细介绍:

EVC 模块组成

EVC 模块由两个并行连接的块组成:

  1. 轻量级 MLP:用于捕获全局的长距离依赖关系(即全局信息)。
  2. 可学习的视觉中心机制:用于保留输入图像中的局部关键区域信息(即局部信息)。
轻量级 MLP

轻量级 MLP 是一个多层感知机,用于捕捉全局信息。相较于基于多头注意力机制的标准变换器编码器,轻量级 MLP 不仅结构简单,而且体积更小、计算效率更高。它取代了标准变换器编码器中的多头自注意力模块。

可学习的视觉中心机制

可学习的视觉中心机制是专门设计用来保留图像局部角落区域信息的。这部分机制与轻量级 MLP 并行运行,共同捕捉全局和局部特征。

输出融合

EVC 模块的输出是这两个块的结果在通道维度上的拼接。即轻量级 MLP 和可学习视觉中心机制的输出特征图沿通道方向进行拼接。

具体实现过程
  1. 输入特征图:输入到 EVC 的特征图是特征金字塔中最顶层的特征图X4​。
  2. 特征平滑:在输入特征图 X4​ 和 EVC 之间,会有一个 Stem 块用于特征平滑。Stem 块由一个 7x7 的卷积层组成,输出通道大小为 256,后面跟着批量归一化层和激活函数层。
  3. 轻量级 MLP:用于捕获全局信息。
  4. 可学习视觉中心机制:用于保留局部关键区域信息。
  5. 特征融合:轻量级 MLP 和可学习视觉中心机制的输出通过通道拼接的方式组合起来作为 EVC 的输出。
EVC 的作用

EVC 模块通过结合全局和局部特征信息,能够为后续的全局集中化调节 (GCR) 提供丰富的视觉中心信息。这种信息有助于浅层特征的调节,使得整个特征金字塔不仅能捕捉全局的长距离依赖关系,还能有效地获得全面且具有判别力的特征表示。

二、准备工作

首先在YOLOv5/v7的models文件夹下新建文件evc.py,导入如下代码

from models.common import *from functools import partialfrom timm.models.layers import DropPath, trunc_normal_# LVCclass Encoding(nn.Module):    def __init__(self, in_channels, num_codes):        super(Encoding, self).__init__()        # init codewords and smoothing factor        self.in_channels, self.num_codes = in_channels, num_codes        num_codes = 64        std = 1. / ((num_codes * in_channels) ** 0.5)        # [num_codes, channels]        self.codewords = nn.Parameter(            torch.empty(num_codes, in_channels, dtype=torch.float).uniform_(-std, std), requires_grad=True)        # [num_codes]        self.scale = nn.Parameter(torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0), requires_grad=True)    @staticmethod    def scaled_l2(x, codewords, scale):        num_codes, in_channels = codewords.size()        b = x.size(0)        expanded_x = x.unsqueeze(2).expand((b, x.size(1), num_codes, in_channels))        reshaped_codewords = codewords.view((1, 1, num_codes, in_channels))        reshaped_scale = scale.view((1, 1, num_codes))  # N, num_codes        scaled_l2_norm = reshaped_scale * (expanded_x - reshaped_codewords).pow(2).sum(dim=3)        return scaled_l2_norm    @staticmethod    def aggregate(assignment_weights, x, codewords):        num_codes, in_channels = codewords.size()        reshaped_codewords = codewords.view((1, 1, num_codes, in_channels))        b = x.size(0)        expanded_x = x.unsqueeze(2).expand((b, x.size(1), num_codes, in_channels))        assignment_weights = assignment_weights.unsqueeze(3)  # b, N, num_codes,        encoded_feat = (assignment_weights * (expanded_x - reshaped_codewords)).sum(1)        return encoded_feat    def forward(self, x):        assert x.dim() == 4 and x.size(1) == self.in_channels        b, in_channels, w, h = x.size()        # [batch_size, height x width, channels]        x = x.view(b, self.in_channels, -1).transpose(1, 2).contiguous()        # assignment_weights: [batch_size, channels, num_codes]        assignment_weights = torch.softmax(self.scaled_l2(x, self.codewords, self.scale), dim=2)        # aggregate        encoded_feat = self.aggregate(assignment_weights, x, self.codewords)        return encoded_featclass Mlp(nn.Module):    """    Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W]    """    def __init__(self, in_features, hidden_features=None,                 out_features=None, act_layer=nn.GELU, drop=0.):        super().__init__()        out_features = out_features or in_features        hidden_features = hidden_features or in_features        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)        self.act = act_layer()        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)        self.drop = nn.Dropout(drop)        self.apply(self._init_weights)    def _init_weights(self, m):        if isinstance(m, nn.Conv2d):            trunc_normal_(m.weight, std=.02)            if m.bias is not None:                nn.init.constant_(m.bias, 0)    def forward(self, x):        x = self.fc1(x)        x = self.act(x)        x = self.drop(x)        x = self.fc2(x)        x = self.drop(x)        return x#  1*1 3*3 1*1class ConvBlock(nn.Module):    def __init__(self, in_channels, out_channels, stride=1, res_conv=False, act_layer=nn.ReLU, groups=1,                 norm_layer=partial(nn.BatchNorm2d, eps=1e-6)):        super(ConvBlock, self).__init__()        self.in_channels = in_channels        expansion = 4        c = out_channels // expansion        self.conv1 = Conv(in_channels, c, act=nn.ReLU())        self.conv2 = Conv(c, c, k=3, s=stride, g=groups, act=nn.ReLU())        self.conv3 = Conv(c, out_channels, 1, act=False)        self.act3 = act_layer(inplace=True)        if res_conv:            self.residual_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)            self.residual_bn = norm_layer(out_channels)        self.res_conv = res_conv    def zero_init_last_bn(self):        nn.init.zeros_(self.bn3.weight)    def forward(self, x, return_x_2=True):        residual = x        x = self.conv1(x)        x2 = self.conv2(x)  # if x_t_r is None else self.conv2(x + x_t_r)        x = self.conv3(x2)        if self.res_conv:            residual = self.residual_conv(residual)            residual = self.residual_bn(residual)        x += residual        x = self.act3(x)        if return_x_2:            return x, x2        else:            return xclass Mean(nn.Module):    def __init__(self, dim, keep_dim=False):        super(Mean, self).__init__()        self.dim = dim        self.keep_dim = keep_dim    def forward(self, input):        return input.mean(self.dim, self.keep_dim)class LVCBlock(nn.Module):    def __init__(self, in_channels, out_channels, num_codes, channel_ratio=0.25, base_channel=64):        super(LVCBlock, self).__init__()        self.out_channels = out_channels        self.num_codes = num_codes        num_codes = 64        self.conv_1 = ConvBlock(in_channels=in_channels, out_channels=in_channels, res_conv=True, stride=1)        self.LVC = nn.Sequential(            Conv(in_channels, in_channels, 1, act=nn.ReLU()),            Encoding(in_channels=in_channels, num_codes=num_codes),            nn.BatchNorm1d(num_codes),            nn.ReLU(inplace=True),            Mean(dim=1))        self.fc = nn.Sequential(nn.Linear(in_channels, in_channels), nn.Sigmoid())    def forward(self, x):        x = self.conv_1(x, return_x_2=False)        en = self.LVC(x)        gam = self.fc(en)        b, in_channels, _, _ = x.size()        y = gam.view(b, in_channels, 1, 1)        x = F.relu_(x + x * y)        return xclass GroupNorm(nn.GroupNorm):    """    Group Normalization with 1 group.    Input: tensor in shape [B, C, H, W]    """    def __init__(self, num_channels, **kwargs):        super().__init__(1, num_channels, **kwargs)class DWConv_LMLP(nn.Module):    """Depthwise Conv + Conv"""    def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"):        super().__init__()        self.dconv = Conv(            in_channels,            in_channels,            k=ksize,            s=stride,            g=in_channels,        )        self.pconv = Conv(            in_channels, out_channels, k=1, s=1, g=1        )    def forward(self, x):        x = self.dconv(x)        return self.pconv(x)# LightMLPBlockclass LightMLPBlock(nn.Module):    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu",                 mlp_ratio=4., drop=0., act_layer=nn.GELU,                 use_layer_scale=True, layer_scale_init_value=1e-5, drop_path=0.,                 norm_layer=GroupNorm):  # act_layer=nn.GELU,        super().__init__()        self.dw = DWConv_LMLP(in_channels, out_channels, ksize=1, stride=1, act="silu")        self.linear = nn.Linear(out_channels, out_channels)  # learnable position embedding        self.out_channels = out_channels        self.norm1 = norm_layer(in_channels)        self.norm2 = norm_layer(in_channels)        mlp_hidden_dim = int(in_channels * mlp_ratio)        self.mlp = Mlp(in_features=in_channels, hidden_features=mlp_hidden_dim, act_layer=nn.GELU,                       drop=drop)        self.drop_path = DropPath(drop_path) if drop_path > 0. \            else nn.Identity()        self.use_layer_scale = use_layer_scale        if use_layer_scale:            self.layer_scale_1 = nn.Parameter(                layer_scale_init_value * torch.ones((out_channels)), requires_grad=True)            self.layer_scale_2 = nn.Parameter(                layer_scale_init_value * torch.ones((out_channels)), requires_grad=True)    def forward(self, x):        if self.use_layer_scale:            x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.dw(self.norm1(x)))            x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))        else:            x = x + self.drop_path(self.dw(self.norm1(x)))            x = x + self.drop_path(self.mlp(self.norm2(x)))        return x# EVCBlockclass EVCBlock(nn.Module):    def __init__(self, in_channels, out_channels, channel_ratio=4, base_channel=16):        super().__init__()        expansion = 2        ch = out_channels * expansion        self.conv1 = Conv(in_channels, in_channels, k=7, act=nn.ReLU())        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)  # 1 / 4 [56, 56]        # LVC        self.lvc = LVCBlock(in_channels=in_channels, out_channels=out_channels, num_codes=64)  # c1值暂时未定        # LightMLPBlock        self.l_MLP = LightMLPBlock(in_channels, out_channels, ksize=1, stride=1, act="silu", act_layer=nn.GELU,                                   mlp_ratio=4., drop=0.,                                   use_layer_scale=True, layer_scale_init_value=1e-5, drop_path=0.,                                   norm_layer=GroupNorm)        self.cnv1 = nn.Conv2d(ch, out_channels, kernel_size=1, stride=1, padding=0)    def forward(self, x):        x1 = self.maxpool((self.conv1(x)))        # LVCBlock        x_lvc = self.lvc(x1)        # LightMLPBlock        x_lmlp = self.l_MLP(x1)        # concat        x = torch.cat((x_lvc, x_lmlp), dim=1)        x = self.cnv1(x)        return x

其次在在YOLOv5/v7项目文件下的models/yolo.py中在文件首部添加代码

from models.evc import EVCBlock

并搜索def parse_model(d, ch)

定位到如下行添加以下代码

elif m is EVCBlock:            c2 = ch[f]            args = [c2, c2]

三、YOLOv7-tiny改进工作

完成二后,在YOLOv7项目文件下的models文件夹下创建新的文件yolov7-tiny-evc.yaml,导入如下代码。

# parametersnc: 80  # number of classesdepth_multiple: 1.0  # model depth multiplewidth_multiple: 1.0  # layer channel multiple# anchorsanchors:  - [10,13, 16,30, 33,23]  # P3/8  - [30,61, 62,45, 59,119]  # P4/16  - [116,90, 156,198, 373,326]  # P5/32# yolov7-tiny backbonebackbone:  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7   [-1, 1, MP, []],  # 8-P3/8   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14   [-1, 1, MP, []],  # 15-P4/16   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21   [-1, 1, MP, []],  # 22-P5/32   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28   [-1, 1, EVCBlock, [512, 512]],  # 29-a  ]# yolov7-tiny headhead:  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, SP, [5]],   [-2, 1, SP, [9]],   [-3, 1, SP, [13]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -7], 1, Concat, [1]],   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 38   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4   [[-1, -2], 1, Concat, [1]],   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 48   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3   [[-1, -2], 1, Concat, [1]],   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 58   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],   [[-1, 48], 1, Concat, [1]],   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 66   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],   [[-1, 38], 1, Concat, [1]],   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[-1, -2, -3, -4], 1, Concat, [1]],   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 74   [58, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [66, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [74, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],   [[75,76,77], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)  ]
from  n    params  module                                  arguments                       0                -1  1       928  models.common.Conv                      [3, 32, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]  2                -1  1      2112  models.common.Conv                      [64, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]  3                -2  1      2112  models.common.Conv                      [64, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]  4                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]  5                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]  6  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                             7                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]  8                -1  1         0  models.common.MP                        []                              9                -1  1      4224  models.common.Conv                      [64, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 10                -2  1      4224  models.common.Conv                      [64, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 11                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 12                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 13  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                            14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 15                -1  1         0  models.common.MP                        []                             16                -1  1     16640  models.common.Conv                      [128, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 17                -2  1     16640  models.common.Conv                      [128, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 19                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 20  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                            21                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 22                -1  1         0  models.common.MP                        []                             23                -1  1     66048  models.common.Conv                      [256, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 24                -2  1     66048  models.common.Conv                      [256, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 25                -1  1    590336  models.common.Conv                      [256, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 26                -1  1    590336  models.common.Conv                      [256, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 27  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                            28                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 29                -1  1  17103040  models.evc.EVCBlock                     [512, 512]                     30                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 31                -2  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 32                -1  1         0  models.common.SP                        [5]                            33                -2  1         0  models.common.SP                        [9]                            34                -3  1         0  models.common.SP                        [13]                           35  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                            36                -1  1    262656  models.common.Conv                      [1024, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 37          [-1, -7]  1         0  models.common.Concat                    [1]                            38                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 39                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 40                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']           41                21  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 42          [-1, -2]  1         0  models.common.Concat                    [1]                            43                -1  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 44                -2  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 45                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 46                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 47  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                            48                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 49                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 50                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']           51                14  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 52          [-1, -2]  1         0  models.common.Concat                    [1]                            53                -1  1      4160  models.common.Conv                      [128, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 54                -2  1      4160  models.common.Conv                      [128, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 55                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 56                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 57  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                            58                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 59                -1  1     73984  models.common.Conv                      [64, 128, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)] 60          [-1, 48]  1         0  models.common.Concat                    [1]                            61                -1  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 62                -2  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 63                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 64                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 65  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                            66                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 67                -1  1    295424  models.common.Conv                      [128, 256, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)] 68          [-1, 38]  1         0  models.common.Concat                    [1]                            69                -1  1     65792  models.common.Conv                      [512, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 70                -2  1     65792  models.common.Conv                      [512, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 71                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 72                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 73  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                            74                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)] 75                58  1     73984  models.common.Conv                      [64, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 76                66  1    295424  models.common.Conv                      [128, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 77                74  1   1180672  models.common.Conv                      [256, 512, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)] 78      [75, 76, 77]  1     17132  models.yolo.IDetect                     [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]Model Summary: 318 layers, 23118028 parameters, 23118028 gradients, 26.7 GFLOPS

运行后若打印出如上文本代表改进成功。

四、YOLOv5s改进工作

完成二后,在YOLOv5项目文件下的models文件夹下创建新的文件yolov5s-evc.yaml,导入如下代码。

# Parametersnc: 1  # number of classesdepth_multiple: 0.33  # model depth multiplewidth_multiple: 0.50  # layer channel multipleanchors:  - [10,13, 16,30, 33,23]  # P3/8  - [30,61, 62,45, 59,119]  # P4/16  - [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbonebackbone:  # [from, number, module, args]  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4   [-1, 3, C3, [128]],   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8   [-1, 6, C3, [256]],   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16   [-1, 9, C3, [512]],   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32   [-1, 3, C3, [1024]],   [-1, 1, EVCBlock, [1024, 1024]],# 9-a   [-1, 1, SPPF, [1024, 5]],  # 10  ]# YOLOv5 v6.0 headhead:  [[-1, 1, Conv, [512, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 6], 1, Concat, [1]],  # cat backbone P4   [-1, 3, C3, [512, False]],  # 13   [-1, 1, Conv, [256, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)   [-1, 1, Conv, [256, 3, 2]],   [[-1, 15], 1, Concat, [1]],  # cat head P4   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)   [-1, 1, Conv, [512, 3, 2]],   [[-1, 11], 1, Concat, [1]],  # cat head P5   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)  ]
from  n    params  module                                  arguments                       0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]                1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                  2                -1  1     18816  models.common.C3                        [64, 64, 1]                     3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]                 4                -1  2    115712  models.common.C3                        [128, 128, 2]                   5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]                6                -1  3    625152  models.common.C3                        [256, 256, 3]                   7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]                8                -1  1   1182720  models.common.C3                        [512, 512, 1]                   9                -1  1  17103040  models.evc.EVCBlock                     [512, 512]                     10                -1  1    656896  models.common.SPPF                      [512, 512, 5]                  11                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]               12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']           13           [-1, 6]  1         0  models.common.Concat                    [1]                            14                -1  1    361984  models.common.C3                        [512, 256, 1, False]           15                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]               16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']           17           [-1, 4]  1         0  models.common.Concat                    [1]                            18                -1  1     90880  models.common.C3                        [256, 128, 1, False]           19                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]               20          [-1, 15]  1         0  models.common.Concat                    [1]                            21                -1  1    296448  models.common.C3                        [256, 256, 1, False]           22                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]               23          [-1, 11]  1         0  models.common.Concat                    [1]                            24                -1  1   1182720  models.common.C3                        [512, 512, 1, False]           25      [18, 21, 24]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]Model Summary: 325 layers, 24125366 parameters, 24125366 gradients, 29.5 GFLOPs

运行后若打印出如上文本代表改进成功。

五、YOLOv5n改进工作

完成二后,在YOLOv5项目文件下的models文件夹下创建新的文件yolov5n-evc.yaml,导入如下代码。

# Parametersnc: 1  # number of classesdepth_multiple: 0.33  # model depth multiplewidth_multiple: 0.25  # layer channel multipleanchors:  - [10,13, 16,30, 33,23]  # P3/8  - [30,61, 62,45, 59,119]  # P4/16  - [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbonebackbone:  # [from, number, module, args]  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4   [-1, 3, C3, [128]],   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8   [-1, 6, C3, [256]],   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16   [-1, 9, C3, [512]],   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32   [-1, 3, C3, [1024]],   [-1, 1, EVCBlock, [1024, 1024]],# 9-a   [-1, 1, SPPF, [1024, 5]],  # 10  ]# YOLOv5 v6.0 headhead:  [[-1, 1, Conv, [512, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 6], 1, Concat, [1]],  # cat backbone P4   [-1, 3, C3, [512, False]],  # 13   [-1, 1, Conv, [256, 1, 1]],   [-1, 1, nn.Upsample, [None, 2, 'nearest']],   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)   [-1, 1, Conv, [256, 3, 2]],   [[-1, 15], 1, Concat, [1]],  # cat head P4   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)   [-1, 1, Conv, [512, 3, 2]],   [[-1, 11], 1, Concat, [1]],  # cat head P5   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)  ]
from  n    params  module                                  arguments                       0                -1  1      1760  models.common.Conv                      [3, 16, 6, 2, 2]                1                -1  1      4672  models.common.Conv                      [16, 32, 3, 2]                  2                -1  1      4800  models.common.C3                        [32, 32, 1]                     3                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                  4                -1  2     29184  models.common.C3                        [64, 64, 2]                     5                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]                 6                -1  3    156928  models.common.C3                        [128, 128, 3]                   7                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]                8                -1  1    296448  models.common.C3                        [256, 256, 1]                   9                -1  1   4287680  models.evc.EVCBlock                     [256, 256]                     10                -1  1    164608  models.common.SPPF                      [256, 256, 5]                  11                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]               12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']           13           [-1, 6]  1         0  models.common.Concat                    [1]                            14                -1  1     90880  models.common.C3                        [256, 128, 1, False]           15                -1  1      8320  models.common.Conv                      [128, 64, 1, 1]                16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']           17           [-1, 4]  1         0  models.common.Concat                    [1]                            18                -1  1     22912  models.common.C3                        [128, 64, 1, False]            19                -1  1     36992  models.common.Conv                      [64, 64, 3, 2]                 20          [-1, 15]  1         0  models.common.Concat                    [1]                            21                -1  1     74496  models.common.C3                        [128, 128, 1, False]           22                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]               23          [-1, 11]  1         0  models.common.Concat                    [1]                            24                -1  1    296448  models.common.C3                        [256, 256, 1, False]           25      [18, 21, 24]  1      8118  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [64, 128, 256]]Model Summary: 325 layers, 6052950 parameters, 6052950 gradients, 7.6 GFLOPs
六、注意

本文是一个示例修改,EVC这个模块添加在此处会导致参数量较为复杂,实际修改可以不按本文yaml示例进行修改,也可以按照官方改进点进行添加,同时加在骨干第一个输出的尺度位置可以控制参数量,但实际有条件的话还是建议多测几次,找到适合自己的改进点。

运行后打印如上代码说明改进成功。

更多文章产出中,主打简洁和准确,欢迎关注我,共同探讨!

【责任编辑:新华网】
返回顶部